Refine Your Search

Topic

Search Results

Journal Article

Evaluation of the Oxidation Stability of Diesel/Biodiesel Blends using the Modified Rancimat Method

2009-06-15
2009-01-1828
This study describes the effect of different types of biodiesel (fatty acid methyl esters, FAME) on the oxidative stability of low and ultra low sulfur automotive diesel fuels. Eight different samples of FAME were employed to create blends of 2, 3, 4, 5, 7, and 10% v/v with four different types of diesel fuels. The samples were analyzed using the modified Rancimat method (EN 15751). The aim of this paper was to evaluate the impact of biodiesel source material and biodiesel concentration in diesel fuel, on the oxidation stability of the final blend. Moreover, the effect of sulfur content and the presence of cracked stocks in the base diesel fuel, on the oxidation stability of the final blends were also investigated.
Journal Article

Thermodynamic Analysis of SI Engine Operation on Variable Composition Biogas-Hydrogen Blends Using a Quasi-Dimensional, Multi-Zone Combustion Model

2009-04-20
2009-01-0931
In this work, a quasi-dimensional, multi-zone combustion model is analytically presented, for the prediction of performance and nitric oxide (NO) emissions of a homogeneous charge spark ignition (SI) engine, fueled with biogas-H2 blends of variable composition. The combustion model is incorporated into a closed cycle simulation code, which is also fully described. Combustion is modeled on the basis of turbulent entrainment theory and flame stretch concepts. In this context, the entrainment speed, by which unburned gas enters the flame region, is simulated by the turbulent burning velocity of a flamelet model. A flame stretch submodel is also included, in order to assess the flame response on the combined effects of curvature, turbulent strain and nonunity Lewis number mixture. As far as the burned gas is concerned, this is treated using a multi-zone thermodynamic formulation, to account for the spatial distribution of temperature and NO concentration inside the burned volume.
Technical Paper

Experimental Investigation of Instantaneous Cyclic Heat Transfer in the Combustion Chamber and Exhaust Manifold of a DI Diesel Engine under Transient Operating Conditions

2009-04-20
2009-01-1122
In this paper, the results are presented from the analysis of the second stage of an experimental investigation with the aim to provide insight to the cyclic, instantaneous heat transfer phenomena occurring in both the cylinder head and exhaust manifold wall surfaces of a direct injection (DI), air-cooled diesel engine. Results from the first stage of the investigation concerning steady-state engine operation have already been presented by the authors in this series. In this second stage, the mechanism of cyclic heat transfer was investigated during engine transient events, viz. after a sudden change in engine speed and/or load, both for the combustion chamber and exhaust manifold surfaces. The modified experimental installation allowed both long- and short-term signal types to be recorded on a common time reference base during the transient event.
Journal Article

Impact of Simultaneous ETBE and Ethanol Addition on Motor Gasoline Properties

2008-10-06
2008-01-2503
This study examines the impact of ETBE and ethanol addition on the main properties of motor gasoline. European Union mandates the use of biofuels in all transport fuels, according to the 2003/30/EC Directive. The addition of ethanol, a known octane enhancing component, in small proportions significantly increases the vapor pressure of the final gasoline, exceeding the maximum specification limits. ETBE (ethyl tert-butyl ether) is on the other hand an excellent but expensive octane enhancing component with beneficial impact on vapor pressure of the final gasoline. This paper examines the ability of ETBE to act as a stabilizer in gasoline - ethanol blends. Two gasoline samples with different chemical compositions and characteristics were prepared by blending basic refinery components. In each sample, ETBE was added in concentrations of 2, 4, and 6 % V/V respectively. In each of these ETBE - gasoline blends, ethanol was added in concentrations from 1 to 6 % V/V in 1% steps.
Journal Article

Effect of Fuel Chemical Structure and Properties on Diesel Engine Performance and Pollutant Emissions: Review of the Results of Four European Research Programs

2008-04-14
2008-01-0838
During recent years, the deterioration of greenhouse phenomenon, in conjunction with the continuous increase of worldwide fleet of vehicles and crude oil prices, raised heightened concerns over both the improvement of vehicle mileage and the reduction of pollutant emissions. Diesel engines have the highest fuel economy and thus, highest CO2 reduction potential among all other thermal propulsion engines due to their superior thermal efficiency. However, particulate matter (PM) and nitrogen oxides (NOx) emissions from diesel engines are comparatively higher than those emitted from modern gasoline engines. Therefore, reduction of diesel emitted pollutants and especially, PM and NOx without increase of specific fuel consumption or let alone improvement of diesel fuel economy is a difficult problem, which requires immediate and drastic actions to be taken.
Journal Article

Experimental Assessment of Instantaneous Heat Transfer in the Combustion Chamber and Exhaust Manifold Walls of Air-Cooled Direct Injection Diesel Engine

2008-04-14
2008-01-1326
An experimental analysis is carried out to investigate several heat transfer characteristics during the engine cycle, in the combustion chamber and exhaust manifold walls of a direct injection (DI), air-cooled, diesel engine. For this purpose, a novel experimental installation has been developed, which separates the engine transient temperature signals into two groups, namely the long-and the short- term response ones, processing the respective signals in two independent data acquisition systems. Furthermore, a new pre-amplification unit for fast response thermocouples, appropriate heat flux sensors and an innovative, object-oriented, control code for fast data acquisition have been designed and applied. Experimentally obtained cylinder pressure diagrams together with semi-empirical equations for instantaneous heat transfer were used as basis for the calculation of overall heat transfer coefficient.
Technical Paper

Diesel/Soy Methyl Ester Blends Emissions Profile from a Passenger Vehicle Operated on the European and the Athens Driving Cycles

2007-10-29
2007-01-4043
The need of a more realistic and dynamic driving cycle which simulates real-world driving conditions in the largest city in the greater area of Balkans, led to the development of the Athens Driving Cycle (ADC). Emission and fuel consumption measurements were conducted over the ADC and compared with those of the New European Driving Cycle (NEDC) using a chassis dynamometer. A Euro II compliant diesel vehicle was used in this study, fuelled with a typical automotive diesel fuel and biodiesel blends at proportions of 5, 10, and 20 % respectively. The unregulated emissions were characterized by determining the soluble organic fraction (SOF) in the particulate matter, together with qualitative hydrocarbon analysis present in the SOF fraction, and of carbonyl compounds (aldehydes, ketones). Emissions of NOx, CO, THC, CO2, and PM10 were also measured over the two test cycles.
Technical Paper

Comparative Evaluation of EGR, Intake Water Injection and Fuel/Water Emulsion as NOx Reduction Techniques for Heavy Duty Diesel Engines

2007-04-16
2007-01-0120
Despite the improvement in HD Diesel engine out emissions future emission legislation requires significant reduction of both NOx and particulate matter. To accomplish this task various solutions exist involving both internal and external measures. As widely recognized, it will be possibly required to employ both types of measures to meet future emission limits. Towards this direction, it is necessary to reduce NOx further using internal measures. Several solutions exist in that area, but the most feasible ones according to the present status of technical knowledge are EGR, water injection or fuel/water emulsions. These technologies aim to the reduction of both the gas temperature and oxygen concentration inside the combustion chamber that strongly affect NOx formation. However, there remain open points mainly concerning the effectiveness of water addition techniques and penalties related to bsfc and soot emissions.
Technical Paper

Single Fuel Research Program Comparative Results of the Use of JP-8 Aviation Fuel versus Diesel Fuel on a Direct Injection and Indirect Injection Diesel Engine

2006-04-03
2006-01-1673
During the last years a great effort has been made by many NATO nations to move towards the use of one military fuel for all the land-based military aircraft, vehicles and equipment employed on the military arena. This idea is known to as the Single Fuel Concept (SFC). The fuel selected for the idea of SFC is the JP-8 (F-34) military aviation fuel which is based upon the civil jet fuel F-35 (Jet A-1) with the inclusion of military additives possessing anti-icing and lubricating properties. An extended experimental investigation has been conducted in the laboratory of Thermodynamic and Propulsion Systems at the Hellenic Air Force Academy. This investigation was conducted with the collaboration of the respective laboratories of National Technical University of Athens and Hellenic Naval Academy as well.
Technical Paper

Experimental Heat Release Rate Analysis in Both Chambers of an Indirect Injection Turbocharged Diesel Engine at Various Load and Speed Conditions

2005-04-11
2005-01-0926
A heat release analysis of experimental pressure diagrams, appropriate for indirect injection (divided chamber) diesel engines, is developed and used to obtain heat release rate profiles during the combustion process in each combustion chamber. Attention is paid to the correct processing of the data, due to the inherent complexity of the mass interchange between the two combustion chambers. The analysis concerns a turbocharged, indirect injection diesel engine, having a very small pre-chamber and a very narrow connecting passageway, operated at various load and speed conditions, located at the authors' laboratory. An extended experimental work, at steady-state conditions, is conducted on a specially developed test bed configuration of this engine, which is connected to a high-speed data acquisition and processing system.
Technical Paper

Modeling the Effects of EGR on a Heavy Duty DI Diesel Engine Using a new Quasi-Dimensional Combustion Model

2005-04-11
2005-01-1125
The model has already been applied on an old technology, naturally aspirated HSDI Diesel engine and on a heavy-duty turbocharged DI one equipped with a high pressure PLN fuel injection system, and the results were satisfying as far as performance and pollutant emissions (Soot and NO) are concerned. Taking into account that the main scope of engine simulation models is to assist engineers and researchers to understand the complex mechanisms involved in diesel engine combustion and pollutants formation and that through the continues engine development, new techniques are implemented, it is obvious that engine simulation models must always be enhanced with new features in order to be kept up-to-date. In this study the model has been modified to take into account the effect of EGR, since the latter one is a measure that will be used more extensively in the future to control NO emissions from turbocharged HDDI Diesel engines.
Technical Paper

Description of in-Cylinder Combustion Processes in HCCI Engines Using a Multi-Zone Model

2005-04-11
2005-01-0171
In the present work, a multi-zone model is presented for the simulation of HCCI engines. This model is an improvement of a previous one developed by the authors. The present model describes the combustion, heat and mass transfer processes for the closed part of the engine cycle, i.e. compression, combustion and expansion. The zones occupy geometrical positions within the engine cylinder and exchange heat and mass throughout the compression and expansion strokes, based on their spatial configuration. Heat exchange is considered between zones and to the cylinder wall. A phenomenological model has been developed to describe mass exchange between zones and the flow of a portion of the in-cylinder mixture in and out of the crevice region. The crevice flow is a new feature and is included in the present model since the crevice regions are considered to contribute to unburned HC emissions. Another new feature is the incorporation of chemical kinetics, based on combustion chemistry reactions.
Technical Paper

Use of JP-8 Aviation Fuel and Biodiesel on a Diesel Engine

2004-10-25
2004-01-3033
The present paper aims to discuss the quality characteristics of Jet Fuels used in the Greek market in comparison with fuels used in other countries and to evaluate jet fuels along with diesel and biodiesel on a diesel engine. To establish the quality characteristics for Jet Fuels of the Greek market, fuel samples were collected from the local refineries on a regular basis, thus monitoring the fuel quality fluctuation over time. JP8, along with diesel and biodiesel, were used alone and in mixtures on a single cylinder stationary diesel engine. Emissions and volumetric fuel consumption were measured under various loads.
Technical Paper

Some Considerations on the Estimation of the Heat Release of DI Diesel Engines Using Modelling Techniques

2004-03-08
2004-01-1405
Simulation models are widely used from research engineers to investigate the combustion mechanism of DI diesel engines. These models can be used, as tools to either comprehend information provided by experimental data or to perform predictions and assist the development process. As widely recognized a valuable source of information for engine performance and emissions studies is the cylinder pressure trace. It can provide after processing information concerning the combustion rate of fuel injected inside the combustion chamber. Often it is also used to calibrate simulation models or even to derive correlations to represent the combustion rate of fuel inside the combustion chamber. The present research team has during the development process of a simulation model for the description of DI diesel engine performance and emissions realized that there exists a serious problem.
Technical Paper

Parametric Study of the Availability Balance in an Internal Combustion Engine Cylinder

2001-03-05
2001-01-1263
The current work uses a method developed by the authors for both combustion irreversibility and working medium availability computations in a high speed, naturally aspirated, four stroke, internal combustion engine cylinder. The objective of the study was to extrapolate already published results of the second-law analysis of diesel engine operation by studying parametrically the effect of main operating parameters such as engine speed of rotation, injection timing, and fuel composition. Extensive experimental data were available for the case of dodecane injection, which were used for the determination of the fuel reaction rate. Computationally, the same reaction rates were used for methane and methanol injection. The production rate of irreversibility during combustion was analytically calculated as a function of the fuel reaction rate with the combined use of first and second-law arguments and a chemical equilibrium hypothesis.
Technical Paper

The Impact of Aliphatic Amines and Tertiary Amides on the Lubrication Properties of Ultra Low Sulfur Diesel Fuels

2000-06-19
2000-01-1916
The objective of this work was the assessment of aliphatic amines and tertiary dialkyl-amides as lubrication additives or extenders, on ultra - low sulfur diesel fuels. In order to evaluate the influence of two types of nitrogen compounds on the lubrication properties of ultra - low sulfur diesel fuels, nine distillation fractions produced by atmospheric distillation of a hydrotreated diesel fuel, were used as the base fuels. Five aliphatic amines and two tertiary amides were used as lubricating additives at five different concentrations i.e. 0.5, 1.0, 2.0, 4.0 and 6.0% by volume, on the nine base fuels. Tribological experiments were carried out on the High frequency Reciprocating test Rig (HFRR). The wear results showed that only four of the five aliphatic amines used, provide satisfactory HFRR mean wear scar diameter (WS 1.4) of less than 460 microns, and at the concentration levels of 1-2% by volume. The concentration levels below 1 % by volume had no effect on the fuel lubricity.
Technical Paper

Available Strategies for Improving the Efficiency of DI Diesel Engines-A Theoretical Investigation

2000-03-06
2000-01-1176
The Diesel engine and especially the direct injection type one is considered to be one of the most efficient thermal engines known to man up to now. It has an efficiency that in some cases is 30 to 40% higher than its competitor the spark ignition engine. The efficiency of the direct injection diesel engine has been considerably improved during the last decade resulting to low fuel consumption and lower absolute values of pollutant emissions. If we consider the green house effect caused by the emitted CO2 it is revealed the environmental importance of high engine efficiency. In the present work a theoretical investigation is conducted using a detailed simulation model for engine performance prediction, to examine the possibilities for improving engine efficiency. The simulation model used is a complete open cycle model for the engine and its subsystems. Such phenomenological models are very suitable for the prediction of engine performance.
Technical Paper

Development of a Simulation Model for Direct Injection Dual Fuel Diesel-Natural Gas Engines

2000-03-06
2000-01-0286
During the last years a great deal of effort has been made for the reduction of pollutant emissions from direct injection Diesel Engines. Towards these efforts engineers have proposed various solutions, one of which is the use of gaseous fuels as a supplement for liquid diesel fuel. These engines are referred to as dual combustion engines i.e. they use conventional diesel fuel and gaseous fuel as well. The ignition of the gaseous fuel is accomplished through the liquid fuel, which is auto-ignited in the same way as in common diesel engines. One of the fuels used is natural gas, which has a relatively high auto-ignition temperature. This is extremely important since the CR of most conventional diesel engines can be maintained. In these engines the released energy is produced partially from the combustion of natural gas and from the combustion of liquid diesel fuel.
Technical Paper

Development of New 3-D Multi-Zone Combustion Model for Indirect Injection Diesel Engines with a Swirl Type Prechamber

2000-03-06
2000-01-0587
During the past years most fundamental research worldwide has been concentrated on the direct injection diesel engine (DI). This engine has a lower specific fuel consumption when compared to the indirect injection diesel engine (IDI) used up to now in most passenger cars. But the application of the direct injection engine on passenger cars and light trucks has various problems. These are associated mainly with its ability to operate at high engine speeds due to the very low time available for combustion. To overcome these problems engineers have introduced various techniques such as swirl and squish for the working fluid and the use of extremely high pressure fuel injection systems to promote the air-fuel mixing mechanism. The last requires the solution of various problems associated with the use of the high pressure and relatively small injector holes.
Technical Paper

Assessment of the Lubricity of Greek Road Diesel and the Effect of the Addition of Specific Types of Biodiesel

1999-05-03
1999-01-1471
This work includes an assessment of the lubricity of Greek road diesel fuel of low sulfur content, and the effect of the addition of two different types of biodiesel which can be produced from raw materials abundant in the Mediterranean area. In this study, a series of representative fuels of the Greek fuel market were tested. In some of them, the lubricity was measured three times, during a period of three months from the day of each sample was produced. In all cases a decrease of the wear scar diameter (WSD) was measured; this behaviour could be attributed to the oxidation reactions that take place during the storage period. In order to monitor the effect of the addition of biodiesel on the lubricity of road diesel, biodiesels produced from sunflower oil and olive oil were used. The use of rape seed oil biodiesel as a diesel fuel substitute is a commercial event in Central Europe; in the United States the soybean oil biodiesel has been examined in detail.
X